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Why is cGAS Important?

Viral Infection

* Herpes
* HIV

Autoimmunity

Cancer

Bacterial Infection

* Tuberculosis
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Prostate
Brain
Colon
Ovarian

Aicardi—-Goutieres syndrome
Lupus

Aging

Senescence
DNA Damage

* To better understand this immune response, we need to develop models
that can capture cellular behavior

Motwani et. al. "DNA sensing by the cGAS-STING pathway in health and disease." Nature Reviews (2019)




Using an ODE Model Approach
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Using an ODE Model Approach
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Rand U et al. Multi-layered stochasticity and paracrine signal propagation shape the type-I interferon response. Mol Syst Bio (2012). 7



Interferon Signaling is Stochastic
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Zhao et al. "Stochastic expression of the interferon-B gene." PLoS biology (2012).



Sources of Heterogeneity and Stochasticity

Transcriptional Magnitude and duration
bursts of stimulus

Low molecular count Signaling history

Composition

Differences
after cellular division in local environment



Why are we doing this?

* We know IFN signaling is heterogenous and stochastic

* We want to know what benefit this brings to a cell population
* Conserve resources?
* Prevent pathogens from circumventing immune signhaling?

We hypothesize there exists an optimal level of cell to cell variability

that pathogenic clearance and chronic IFNP signaling
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Choosing a Modeling Scheme

Build on Model large Be able to model Inerelqeielelis
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/////////////////% ABM Modeling

Hybrid PDE/ABM Modeling with ODE Rule Sets
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Incorporating Heterogeneity and Stochasticity
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Simulating IFNB Transport
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Heterogeneity does not Impact Bulk Cell Measurements
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Heterogeneity in Cell Composition Increases IFNB Production

Adding Gaussian noise
to initial conditions

4-
>
a3.
5 ( )
)
22
8 — Cell
O 1
o A J
0-
0.0 0.5 1.0 15

Concentration (nM)

16



Heterogeneity in Cell Composition Increases IFNB Production
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There is an Optimal Level of IFNB Producing Cells
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There is an Optimal Level of IFNB Producing Cells
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Conclusions
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Modern compiled languages like Julia allow for large
simulations

Adding heterogeneity into the model had no impact on bulk
measurements

Heterogeneity allows cells to maintain low molecular
concentrations without sacrificing interferon production

Stochasticity allows cells to produce minimum interferon
while maintaining cell survival
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